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Abstract. In this paper we present a method called NOVEL (Nonlinear Optimization via
Lixternal f.ead) for solving continuous and discrete global optimization problems. NOVEL ad-
dresses the balance between glebal search and local search, using a trace to aid in identifying
promising regions hefore committing to local searches. We discuss NOVEL for solving contin-
uous constrained optimization problems and show how it can be extended to solve constrained
satisfaction and discrete satishiability problems. We first transform the problem using lagrange
multipliers inte an unconstrained version. Since a stable solutionin a Lagrangian formulation only
guarantees a local optimum satisfying the constraints, we propose a global scarch phase in which
an aperiodic and bounded trace funetion is added to the search to first identify promising vegions
for local search. The trace generates an information-bearing trajectory from which good starting
points are identified for further local searches. Taking only a small portion of the total search
time, this elegant approach significantly reduces unnceessary local searches in regions leading to
the same local optimum. We domonstrate the effertivencss of NOVEL on a enllection of contin-
uous optimization benchmark problems, finding the same or better salutions while satisfying the
constrainls. We extend NOVEL to discrete constraint satisfaction problems (CSPs) by showing
an efficient transformation method for CSPs and the associated representation in finite-difference
equations in NOVEL, We apply NOVEL (o solve Boolcan satisfiability instances in circuit fault
detection and circuit synthesis applications, and show comparable performance when compared
to the best existing method.

Keywords: Augmented Lagrange multiplier method, continuous nonlincar programming prob-
lems, constraint satisfaction proklems, satisfiability problems, trace function. trajectory-based
methaod.

1. Iutroduction

Int this paper we consider constrained global optimization problems over continuous
and discrete variables. For continuous problems, we show an elegant global search
method that traverses the search space in a continuous and cffective manner. We
show extensions of our proposed method 10 constraint satisfaction problems {CSPs)
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and discrete problems. In the latter case, we use satisfiability problems {SATs) to
demonstrale the effectiveness of our proposed method.

(ilobal minimization looks for the minimizer &*~ rhat is no larger ihan any other
local minimum z* [45, 23, 94, 63], whercas local mirimization aims at finding a local
minimum z*. Finding the global optimuin #** is a challenging problem as there
may not be enough time to find a feasible solution, and even when a feasible solution
is found, we have no way of showing that it is optimal. As stated by Griewank [23],
global optimizalion is mathematically ill-posed in the sense that a lower bound for
f(z} cannot be given after any finile number of evaluatious, uuless f satisfies certain
subsidiary conditions such as Lipschitz condition and the condition that the search
area is bounded. Standard nonlinear programming methods usually obtain a local
minimum or a stationary point satistying the constraints. Such a local solulion
is global only when f(r) is quasi-convex and the feasible region is convex, which
rarely happens in practice [23].

Gilobal optimization is a eompliex process comptised of scarching different regions
of attraction and balancing the computation between global search and Jocal refine-
ment. In an optimization problem, a region of attraction defines the region inside,
or on the rim of, which there is a minimum and the constraints are satisfied. The
rim of a region is a divide that separates it from others, Due to nonlinearity, global
optimization is often performed without a priori knowledge of problem terrains or
regions of attraction [94, 97, 72, 58]. Therefore, global optimization algorithis
use heuristic global measures to search for new regions of attraction at run sime.
Promising regions identified are further optimized by local refinement procedures,
such as gradient descert and Newton's methods,

In this paper, we propose a new tnethod, called ¥NOVEL {Nonlinear Optimiza-
tion via Futernel Leud), Tor solviug constrained global vptimization problems. Our
algorithm can be viewed as a dynamic system that takes as input a trace and
generates a trajectory to collect terrain information during the global-exploration
process. The trace is a user-designed coutinuous aperiodic curve that advances
with tirme. When combined with local gradients, the continuous trace evolves into
an information-bearing trajectory that finds new regions of attraction. Based on
the Lrajectory, promising starting points are identified from which existing local
optimization methods are applied to find exact local minima.

We have applied NOVEL to two classes of application problems in this paper. The
first class is a collection of constrained global optimization benchmark problems [23]
derived from a variety of engincering applications. Unlike smail artificial benchmark
problems [3, 90, 5, 20], most of these problems are non-convex and have sizes
ranging from small (tens of variables) to medium to large (hundreds of variables).
Many of them have their best known solutions reported by others in the literature;
however, the optimal solutions are generally unknown. As a result, they represent
a challenging class of problems to be studied by any optimizatlion algorithm. In
Section 5 we show improved solutions to some of the problems summarized in
Table 1.
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Table 1. Summary of constrained continuous benchmark problems reported in [23] on
some engineering applicasions and the ranges of ihe number of variables and the number
of constraints in each problem

Application Problem No. Variables No. Constraints

5,10]

Pooling/Blending [ [5,10]
VI.8I Compaction Design [10%,10%)] [104,10°]
Pressure Vessel Design [15,20] [40,50]
Distillation Column Sequencing [30, 90] [30,70]
[
[
]

Reactor-Separator-Recycle System 100-120] [80,100}

Complex Chemical Reactor Network 40,110] [30,100]
Heat Lxchanger Network Synthesis 10.60] [10,40]
Speed Reducer Weight Minimization [5,10] [10,20]
Phase and Chemical Reaction Equilihrium  {7,10] [4,13]

The second class of application problems we have studied are the satisfiability
(SAT) problem described in the DIMACS benchmark suite. NOVEL, as a general
method for global optimization, shows competitive results when compared to the
best, existing methods designed for these problems.

This paper is organized as follows. Section 2 formulates the problems for global
optimization. Previous works on global optimization are summarized in Section 3.
We then describe NOVEL in Section 4. Fuxperimental results on nonlinear con-
strained optimization are reported in Section 5, and those for SAT are in Section 6.
Concluding remarks are drawn in Section 7.

2. Problem Formulations and Transformations

[n this section we show a unified formulation of global search problems. These
problems can be grouped into three classes.

e Continuous optimization probliems with objectives. These arc constrained non-
linear optimization problems over continuous variables and are the basic form
solved by our global optimization algorithm. Fach has a {nonlinear) objective
function and a set of possibly nonlinear constraints.

o Continuous problems without objectives. These are also called CSPs or feasibil-
ity problems, as the goal is to find feasible solutions that safisfy the constraints.

o Discrete problems, with or without objective. We study SAT, a special problem
in this class.

In the remalnmg sections, we only study in detail problems in the first class and
SAT problems in the last class, For the second class, we show its formulation in
this section, and will show its evaluation in a future paper.
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2.1. Constrained Nonlinear Global Optimization Problems

They take the following form.
minimize f(z )

subject to h(x (1)

(J‘
where € R”, f(z) is an objeclive function, h(z} represents a set of m equality
constraints, and g(«), a sct ol ¢ inequalily conslraints, All f(z), 2(2), and g(x) are
assurned to be differentiable,

2.2. Continuous Constraint Satisfaction Problems (CSPs)

These are solved when a satisfying assignment of variahles is fonnd. An equality-
constrained C5P can be defined as follows.

Find a feasible solution that satisfies A(z) =0 (2)

A CSP can be transformed into a constrained optimization problem by adding a
merit function that measures the norm of the constraint set.

minimize N{h{x)) (3)
subject to Az} =0

where © € R”, h{z) is defined so that it is differentiable, and N (.} is a scalar
differentiable function that takes the norm of its argument so that N{h(z)) = 0 iff
h{z) = 0. Although (3) is equivalent to the original constraint-only formulation (2),
the objective (merit) function indicates how close the constraints are being satisfied,
hence providing additional guidance in leading to a satisfiable assignment.

Note that a sufficient condition for solving the CSP defined in {2) is when there is
an assignment snch that the objective function in (3) is zero. However, optimizing
the objective [unction in (3) alone without the constraints is less effective as there
may exist many local mintma in the space of N(.). Strictly following a descent
path of N(.) often ends up in a dent where N(.} is not 0 but its value cannot be
improved by local refinement.

2.3. Discrete CSPs

These are similar to continuous CSPs except that their variables take only discrete
values, For an equality-conscrained discrete C3P, N (fe(2)}, the norm in (3), can be
defined as the number of conflicts in h(z), where 2 € Z for general integer CSPs and
x € {0, 1} {or binary CSPs. There are various ways to define conflicts; an example of
which is the nuinber of unsatisfied constraines. The lormulation is stated as follows.

minimize N(h(z)) (4)
subject to A{x) =0, wherez e Z
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Many combinatorial problems, such as scheduling, coloring and Boolean satisfiabil-
ity can be formalated as discrete C5Ds.

Satisfiability (SAT) is an important class of discrete CSPs that we study in this
paper. It can be used to model many problems in artificial intelligence, computer
aided design, database query, and planning, just to name a few. They are known
to be NP-complete and require algorithms of exponential complexity in the worst
case.in order to obtain a salisfying assignment.

A SAT problem is defined as {follows. Given a set of clauses Cq,Cs, -+, (", on
variables x1, 27, -+, Ty, and a Boolean formula in a conjunctive normal form (CNT)

CinCyne Ny, (5)

find an assignment of values to the variables so that {5) evaluates to {rue, or derive
its infeasibility if the problem is infeasible,

Instead of solving (5) directly, the problem can he reformulated as a glabal opti-
mization problem in which the goal s vo minimize N{x), the number of unsatisfiable
clauses. That is,

minimize N(z) = i Ui(z) {6)
i=1

where {7 (x] equals 0 if the logical assignment z satisfies C; and I otherwise. In
this case, N{z) equals 0 when all the clauses are satisfied.

Unfortunately, N (x) defined in {f) has many dent-like local optima [BR, Th, 76,
33, 34, 35|, where a local minimum is a state where its local neighborhood does
not include any state that is strictly better. Consequently, descent or hill-climbing
methods can get trapped at lacal minima, and restarts merely bring the search to
another local minimum.

A better way to handle SA'T problems is to formulate them as constrained opti-
mization problems. The formulation we have adopted in this paper is as follows.

minimize N{z) = ZIQ(:{:) (7}
=1
subject to Ui{w) =0 Vie{),2,... n}

This formlation overcomes the deficiency of (6) becausc when the search Is trapped
in a local minimum, the unsatisfied clauses deflined in the constraints can be used
to provide a force to bring the search out of the local mininum.

2.4. Handling Constraints

Transformational and non-fransformational techiniques are two important classes of
techniques developed to solve constrained local optimization problems. They can
be adopted to handle constraints in constrained global optimization.
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Non-transformational approaches include discarding and back-to-feasible-regions
methods. The former [47, 53] drop solutions once they were found to be infea-
sible, and the latter (48] attemnpl to maintain feasibility by reflecting moves from
boundaries if such moves go off the current feasible region. Both methods have been
combined with global search and do not involve transformation to relax constraints.

Transformational approaches, on the other hand, convert the original problem into
another form before solving them. Well known methods include penalty, barrier,
and Lagrange-multiplier methods [54]. Penalty methods transform constraints into
part of the objective funetion anrd require tuning penalty coefficients either hefore or
during the run. Barrier methods are similar except that barriers are set up to avoid
solutions from going out of feasible regions. Penalty and barrier methods are inexact
methods that eannot guarantee accurate optimal solntions at the end, although they
can be combined with other methods to overcomne the accuracy problem.

The Lagrange-multiplier method is an important tneans of managing numerical
stability and achieving anlutinn acenracy at a priee of increased number of prohlem
dimensions, Dy mmtroducing Lagrange multipliers, constraints can be pradually
resolved through iterative updates. Lagrange and augmented Lagrange methods
are exact methods that aptimize the nhjective wirh great precision by attempting
to meet the Kuhn-Tucker conditions. In view of their advantages, we use Lagrange
multipliers for constraint relaxation in developing our algorithm.

Using Lagrange multipliers, we have reformulated continuous C5Ps {3} and dis-
crete CSPs (4) into constrained global optimization problems. These are shown in
the next two subsections.

2.5. Lagrange Transformation for Continuous Problems

We handle constraints in continuous problems by Lagrange transformation. The
transformed problems are used in Section 4 when we present our global optimization
algorithm,

In general, constrained optimization problems may include equality and inequal-
ity constraints. In this paper, we first transform an inequalily constraint into an
equality constraint by adding a slack variable and by introducing a new inequality
constraint on the slack variable. Other betier approaches, such as that discussed
by Luenberger [54], have been studied in our recent work but are not reported here.
The optimization problem with equality constraints is shown as follows.

minimize [{z) (&)
subject to A{z) =1

The Lagrangian function of (8) can be represented as follows,
Liw, \) = f(w) + AT hiz) (9)

where A is the corresponding set of Lagrange multipliers. According to classic
optimization theory, all the extrema of (8), whether local or global, are roots of the
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following set of equations.

VeLiz, ) =0 (10}
UaL(z, A} =0 (11)
These two equalions [uim the sufficient conditions to guarantee the oplimality to
the solution of (8).
To provide better numerical stability in convergence, we can use instead the

augmented Lagrangian formulation. The augmented Lagrangian of the opti-
mization problem (8) is defined as follows.

L{a, Ny = fa) + ()] + AT hiz) (12)
Again, our task is to find zeros for

Tkl A) =0 (14)

To solve (13) and (14), we torm a Lagrangian dynanic system that includes o set
of dynamic equations to seek equilibrium points along a gradient path. These equi-
librium points are saddle-points of (13) and (14), which correspond to constrained
minima of the underlying optimization problem (%). The Lagrangian dyuasic sys-
tem can be described as follows.

da i
a ﬁVIL‘(:UV\) (15)
dA .

Note that when (13) and (14) are solved al the same time, equilibrium holds when
both right-hand sides arc zero. Turther, note thau equilibrium is a saddle point
becanse (13) has a minus sign that optimizes the Lagrangian function in the space
of the original variables along a vegative gradient path, whereas (16) optimizes the
function in the space of the Lagrange multipliers along an ascending path.

Methods for solving (13) and (16) are based on local scarch methods. When
applied, an initial assignment to z and A are first given, and the local solution will
be the very saddle point reached from this initial point. After reaching the saddle
point, the sotution will not improve unless a new starting point is selecled, Nute
that nonkinearity can cause chaos in which a small variation in the initial point
can lead to a completely different solution. This happens when (15) and (16) are
implemented using a finite-step method that uses a line search to progress along a
gradient-like direction in each iteration. In this case, over-shoots and under-shoots
can lead to unpredictable and perhaps undesirable solutions.

The Lagrange method can be used to solve CSPs formulated in (3). Define the
Lagrangian for (3) as

L{z,A) = N(h{z))+ AT h(r) {17)
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The corresponding dilferential equations used to seek saddle points are as follows.
dz

g = TTeLle ) = = Nih(@)) — AT h(2) (18)
dA .
7 = Valle ) =h() {19)

Note that any local minimum in the Lagranglan space Is also the global minimum.
Hence, the search will stop when a satisfiable solution is reached, This is unlike the
ease when only the original » variables are optimized.

2.6. Lagrange Transformations for Discrete Problems

In a similar way, discrete problems can first be transformed using a discrete version
of the Lagrangian method. In this subsection, we present the Lagrangian transfor-
matious for discrete CSPs. The corresponding formulation for discrete optimization
problems is similar and will not be shown.

Define N(A{x)), the norm in (3), as the number of unsatisfied constraints (con-
flicts) in h(z), where » € Z for general integer problems and x € {0,1} for binary
ones, The resultant problem formulation is as follows.

minimize N{h(x)) (20}
sibject fo A(x) =0, z € Z

C'SPs aver diserete variables can be solved just iike continuans problems as far
as constraint satisfaction is concerned. 'The Lagrangian equation corresponding
to (20) is

L{x,A) = N(h(2)) + ATh(2) 21)
The difference equations similar to (18) and (19) are
Apsr = Ap A+ Al (23)

where & is the iteration index, and A is the counterpart of gradient in discrete
space. Here, A, f(z) is a unit vector that reduces the value of f(z) by the largest
amount as compared Lo unit vectors in other directions.

I is easy to see that the necessary condition for (22) and (23) o converge is when
A{x) = 0, implying that all the constraints are satisfled. I any of the constraints
in A(x) is not satisfied, the Lagrange multiplicrs will continue to evolve to handle
the unsatisfied constraints.

As stated in Section 2.3, SAT problems defined in (7) can be considered as special
cases of discrete CSPs, The difference equations corresponding to (22) and (23) for
SAT problews are as [ollows,

Pryyl = ok 9O Ay Lzg, A (24)
’\k+l == '\k + L"Y(J?k) (25)
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Table 2. Global and local search components used in existing global optimization methods,

Method (zlobal Component T.ocal Component,
Random Search Uniform Samplitg Any Available Local Method
Genetic Algorithm Sclective Recombination  Optional
Simulated Anncaling  Boltzmann Motion Optional
Clustering Method Cluster Analysis Any Available Local Method
Bayesian Modeling Bayesian Decision Optional
Interval Melhod Interval Caleulation Rarely Used

Informed Search with

Bound Approximation
Generalized Gradient  Traveling Trajectory Rarely Used
B J 3 Y

Covering Method Rarely Used

where < in (21) denotes the exclusive-OR operator that sets wg4; by flipping a
chosen variable 2z corresponding to A, L{xg, Ax). In this way, one of the « variables
advauces Lo its neighbor with Hamming distance 1. The Lagrange multiplicrs in (25)

are updated according to the satisfaction of I/(z} in an individual basis.

3. Previous Work

In this section, we summarize previous approaches for solving constrained global
optimization problems and discrete SAT problems. These are the two classes of
problems addressed in later sections. At the level of global search, strategies for
solving constrained problems are similar to those for solving unconstrained problems
except in the handling of constraints.

3.1. Existing Global Optimization Strategies for Continuous Problems

A variety of deterministic and stochastic methods for finding global solutions to
non-convex nonlinear optimization problems have been developed in the past three
decades. A taxonomy on global optimization methods can be found in [94, 45, 24,
40, 63]. Figure 1 shows a classification of constrained global optimization algorithms
surveyed in this section.

The survey that follows focuses on features of methods for solving continuous,
constrained problems. Whenever it is possible, we analyze the balance that each
algorithm strikes between global search and local refinement, and relate this balance
to its performance. Table 2 summarizes this balance for a number of popular global

optimization methods.
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[~ covering

-~ deterministic T interval analysis

- transformationat  --— — generalized gradient
. :
constrained i
lobal  —-
£ -— random search
oplimization
non- i
transformational — clustering

— stochastic Baysian modeiing

— simulated annealing

—  genetic algorithm

Figure 1. Classification of Global Optimization Algorithms

2.1.1.  Stochastic Algorithms

A peneral stochastic algorithm [BR, 94, 97, 79] far global aptimization consists of
three major steps [72]: a sarapling step, an optimization step, and a step for check-
ing the stopping criterion.

Random Search Methods. Three of the simplest random search algorithms
are purce random search, single-start and multi-start [64, 100, 101, 41, 86). They use
random sampling for global search and a tocal search method to obtain the exact
local optima. Their advantage is their simplicity and low sampling ovorhead. Since
they are easy to implement, they are often used by non-experts to solve practical
problems when global optimality is not critical. Their disadvantage, as pointed out
in {94, 72, 9], is the excessive iterative steps spent in verifying whether the sampled
points will eventually lead to new local minima. Hence, the design of stopping rules
is critical in practical implementations [10, 8, 11, 9].

Genetic Algorithms ((GA). Glohal search in GA involves the rational genera-
tion of new sample points based on performance of the whole population of samples
in each iteration {25]. GA arrives at local solutions either as a result of gene drift
at the end of the reproduction process or through local steps that are performed
off-line. Gradient-like information is not used in the recombination process, and the
effectiveness of applying GA to continuous closed-form problems remains to be jus-
tified [A5]. This in turn limits (GA in handling differentiable functions. Efforts were
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teported in combining GA for global search and penalty functions for relaxing con-
straints to solve real-world engincering problems with closed form functions [66].

!sing ten constrained optimization problems arising from mechanical, chemical,
and clectrical engineering arcas, the resuits show that GA converges slowly and has
difficulty in satisfying constraints,

Simulated Annealing {(SA) is a simulation of the physical process of anncaling,
naniely, the process of driving a physical system to a minimal energy configuration
by means of a slow reduction in the temperature of the system. Its global strategy
is derived from the concept of thermal equilibrium in a stochastic sense. Its key
leature is in its controlled strategy for adaptive search that samples many regions of
attraction before ending up as a greedy scarch. SA was originally designed to solve
combinatorial optimization problems [50, 14]: for an extensive survey. see {1, 2]. The
application of SA and related techniques to solve continuous glohal optimization
problemns can be found in [95, 13, 16, 65, 53, 47]. Recently, Romeijn and Smith [67]
used SA io solve constrained continnous global optimization problems. Their re-
sults are comparable in quality to existiog salntiong an a collection of classical test
problems.

Clustering Methods. By cluster analysis on random sample points, these al-
gorithms iry to start just one local search in each cluster in order to identify its
local minimum. Two global sirategies have been used for clustering [94]. The
first [52] retains only points with relatively low function values to formn ciusters
that correspond respectively to regions of atiraction. The second [91] pushes each
point towards a local minimurm by performing a few steps of local descent. Classi-
cal ireatments of clustering methods include [94, 52, 91], and more recent papers
can be found in [92, 12, 90. 68, 94, 93]. Mistorically, clustering algorithms have
heen proposed to improve muiti-start methods. Although they have some success
in solving global optimization problems {90], they depend heavily on when Lo stop
random sampling and switch to a local search. Late stopping will generate new
sample points, leading to a very large numbcer of extra local searches [72, 93].

Bayesian Methods schedule a new iteration of search in order lo reduce the
estimated risk of losing the global minirmum, based on past observations of func-
tion values. Schagen [71] used a stationary stochastic process model to represent
internally an objective function of success in a reasonable number of function eval-
wativns, Dased on Kushner’s method [51] in one dimension, a global search al-
gorithm for optimization in n dimension is presented in {88]. More introductions
can be found in [94, 58, 97, 59]. A major drawback of Bayesian methods is their
couputational complexity that grows cxponentially with the number of problem di-
mensions [R8, 59]. Therefore, their use for solving multi-dimensional problems and
for approximating objective functions is restricted [94. 97, 59]. They arc believed
Lo he st useful when the number of problem dimensions is up to around 15 [88].
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3.1.2.  Deterministic Algorithms

Instead of using sampling for glabal exploration, deterministic glabal optimization
methods exploit the following global search strategies: (a) retain regions that con-
tain good solutions while droppiug regions that do not contain any solution (as in
interval methods); (b) approximate the global solution iteratively by using tighter
bounds (as in covering methods); (¢} avold getting trapped by reshaping function
landscape or by imitating dynamic systemns of particles in energy fields (as in gen-
cralized gradient methods).

Interval Methods [40, 60, 39] use interval aunalysis to elirinate regions contain-
ing no solutions. Eventually, a collection of solution intervals are found, some of
which can have high quality solutions. To speed up interval analysis for differen-
tiable problems, Newton-like and gradient-based methods can be used. Unlfortu-
nately, their complexity is extremely high, and the method is best suited for small
problems.

Covering Methods. ‘The simplest covering methods detect subregions not con-
taining global minima and their exclusion from further consideration. For Lipschitz
problems, covering methods provide the confidence in quality of solution in addi-
tion to the solution itself. Due to exponential complexity of covering algorithms,
only problems of lmited size {in the ordes of 10 to 20) can be solved. Acceleta-
tion techniques to improve porformance has been proposed [6, 7). A comprehensive
treatment of covering methods is given in the monograph of Horst and Tuy [45]. A
recent survey on covering methods can be found In [21].

Generalized Gradient Methods utilize gradient or higher-order informalion in
such a way that continue the search trajectory every time a local solution is found,
They date back to the 1960°s and have many metaphors in physics. Classical
works can be found in the survey book [94]. In general, this approach can be
applied in two ways. First, the differential equation describing the search trajectory
can be modified so that it can escape from local minima. These methods are a
subclass of trajectory methods [96, 149, 70, 4, 81, 89, 3, 04]. Seccond, a standard local
algorithm can be repeatedly applied to a modified function (such as the tunneling
function [15] or filled function [26]). The modified function reshapes the original
objective function by filling in dents that have been identified. As a result, the
same local minima will not be revisited. These methods are a subclass of penally
methods [26, 15, 91].

3.1.8.  Compleritics of Global Optimization Melhods over Continuous Variables

Global optimization of continuous nonlinear problems has been recognized as very
difficult and intractable [62, 46]. The previous work sucveyed in this subsection are
generally heuristic in nature and depends heavily on problem formmlations, initial
starting points, and amount of time allowed.

Stochastic optimization algorithins are popular recently. They sample the objec-
tive function and perhaps compute the derivatives for a small aumber of points.



TRACE-BASED METHODS AND SATISFIABILITY PROBLEMS 119

Since gradient information is not always available, the algorithm will not be able lo
know whether a function will dip to some unexpected sinall value between sample
points [40]. Further, the reyuired number of samples to arrive at a desired solution
is often prohibitive for large problems.

On the other hand, deterministic algorithms (snch as covering and interval anal-
ysis [40]) tries 10 guaranlee the accuracy of sulutions. As a result, they are forced
to deal with severely restricted functions in order to exploit mathematically rigor-
ous properties, and are not very useful for solving general nonlinear programming
problems [94, 72, 45}, Compared with stochastic methods, very few deterministic
methods have been used in practice [19].

In existing trajectory methods, intensive computations in glohal search prohibits
their application to large problems. Generally, ihey do not cuiploy good local search
methods [54], such as conjugate gradient and Quasi-Newton methods, Rather, they
use tightly coupled global and local search strategies, often compromising the global
part by the local part. Note that the local part should locus on rates of conver-
gence and/or constraint satisfaction, whercas the global part should emphasize on
discovery of better or newer regions, avoiding revisits of the same local minima.
‘['his compromise between global and local searches severely limits the performance
of global search, and results in very high comiputational complexity.

In view of the drawbacks in trajectory methods and the imbalance between global
and local searches {Table 2), we propose in Section 1 a new algorichm shat uses
deconpled global and local search strategies. Our global scarch strategy is based on
a traveling trace that collects geometrical information and uncovers new regions of
local minima. Note that the functions we study are continuous and differentiable
with possibly a finite number of discontinuitics, and that each function has a set
of regions of attraction, each ol which is a continuum with gradually changing
contours. Consequently, if the trace passes through the vicinity ol a local minimun,
a local search will be able to identifv it. By separating giobal from local searches,
our rmethod is able to identify local minima more eflectively than previous trajectory
methods.

3.2. Related Wourks on SAT Problems

Previous methods for solving SAT problems can he classified into discrete and
continuous, the latter involving the trausforiation of a discrete SAT problem into
a continuous problem before solving it.

2.92.1. Discrete methods

Discrete methods can be either complete or incomplete, depending on their ability
to prove infeasibility. Complete methods use some form of informed backtracking to
search the space systematically, whereas incomplete methods usually rety on ad hoc
heuristics. Complete scarch metheds for solving SAT problems include resolution
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and Davis-Putnam [18] procedure. They are computationally intensive becanse
they are enumerative in nature. For instance, Selman ef al. {75] and Gu [35) have
reported that Davis-Putnam procedure cannot handle SAT problems with more
than 150 variables.

Incomplete discrete search methods are generally based on random restarts and
methods to evaluate a current (partial) assignment. In random restarts, a local
search Is first performed at a starting point, and a new starting point is gener-
ated when no further improvement is found [rom the previous starting point. The
evaluation of whether a ctate is promising is done by the cvaluation function. Iix-
amples of which include probabilistic measures (as in simulated annealing [0, 14]),
heuristic functions (as in fitness functions of genetic algorithims [43, 55]), and num-
her of constraints violated (as in constraint satisfaction algorithms). The problem
with random restarts is that a search in a seemingly good direction may get stuck
in a very small local minimum, and a random restart may bring the search to a
completely different search space. Selman ot al. [76] has found that annealing is
not effective for solving SAT problems. To the best of our knowledge, there is no
successful application of genelic algorithms to solve SAT problemns.

Recently, some local search wethods were proposed and applied 1o solve farge SAT
problems {61, 27, 17]. The most notable ones are those developed independently
by Gu and Selman.

Gu developed a group of local search methods for solving SA'l' and CSF problems.
In his Ph.D thesis [29], he first formulated cornflicts in the objective function and
proposed a discrete relaxation algorithm (a class of deterministic local search} to
minimize the number of conflicts in these problems. The algorithms he developed
subsequently focused on two components: methods to continue a search when it
reaches a local minimum, and methods for variable selection and value assignment.
In the first component, he first developed the so-called min-conflicts heuristic [29]
and showed significant performance improvement in solving large size SA'T, n-queen,
and graph coloring problems [29, 83, 84, 82, 85]. 1lis methods use various local
haudlers to escape from local traps when a greedy search stops progressing |30, 36,
37, 31, 38, 32]. Here, a search can continue without improvermnent when il reaches
a local minimum [36] and can escape from it by a combination of backtracking,
restarts, and random swaps. In variable selection and value assignment, Gu and
his colleagues have developed random and partial random heuristics [30, 83, 36,
84, 82, 37. 33, 31, 38, 34, 35]. Thesc simple and effective heuristics significantly
improve the performance of local search algorithms by many orders of magnitude.

Selman developed GSAT [79, 7h. 76, 78, 73, 77} that starts from a randomly
generated assignment and perforus local search iteratively by fipping variables.
Such flipping is repeated until either a satisfiable assignment is found or a pre-set
maximum number of Hlips is reached. When trapped in a local minimum, GSAT
either moves up-hill or jumps 1o another random point. To avoid getting stuck on
a plateau, which is not a local minimum, GSAT makes side-way moves.

In short, the objective function in (6) may have many local minima that trap
iocal search methods, Consequently, a search in a seemingly good direction may get
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stuck in a small loeal minimum, and will rely on random restarts or hill climbing to
bring the search out of the local minimum. However, both schemes do not explore
the search space systematically, and random restarts may bring the search to a
completely different search space.

SAT can also be considered as a constraint-satisfaction problem (CSP). Existing
approaches to solve constraint-satisfaction problems include backtracking [56, 34],
best-first search, most-constrained fiest search [87], and local-search methods such
as hill-climbing [67, 76, 73, 58, 34]. These methods are generally combined with
heuristic gnidance such as conflict minimization [56, 83].

3.2.2.  Continuous methods

In the continnous approach, discrete variables in the original SAT problem are first
transformed into continuous variables. After finding a solution in the continuous
space, the continuous variables are restored into integers lrom fractional values.
Direct transformation and funciional transformation are two ways to transform
discrete variables inte continuous oncs. The latter uses a continuous function that
resembles a step function (such as a sigmoid function), whereas the former formu-
lates the problem in such a way that a feasible solution in the transformed problem
is the same as that in the original problem.

After transforming a discrete problem into a continuous one, various local-search
methods can be applied to solve it. These include simplex methods for solving linear
programming problems, steepest descent, conjugate gradient, Quasi-Newton, and
Lagrange-multiplier methods [54]. For instance, Hopfield-type neural networks [44]
are a steepest descent implementation based on a sct of dilferential equations. An-
other approach proposed by Gu [33, 34, 35] is to use direct transformation and
apply descent methods such as steepest descent and coujugate gradient.

The disadvantage of searching in the continuous space is that continuous solutions
found are not guaranteed to satisfy the original constraints after restoring the con-
tinuous variables to integral ones. Moreover, searches in the continuous space often
get trapped in local minima, requiring multi-starts or backtracking to restart ihe
search fromm a new starting point. One exception in which a combined local search
and backtracking is effective was recently proposed by Gu [35], who transformed
a SAT problem into an unconstrained global optimization problemn in real space.
Using a combination of gradient descents in continuous space and backtracking in
discrcte space, Gu showed significant improvements in solution tlme for solving
certain classes of conjunctive normal-form formulae, ¥or other problems, a local
scarch often leads to local minima, and the number of times that the algorithm
backtracks grows exponentially with problem sizc.
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Figure 2. Global search and local refinement are the two phases of NOVEL, whose behavior is
demonstrated by the trajectory plot on the Lyupunov contour map. In the global search phase, the
trajectory shows a combined offect of gradient descent< and pull exert ed by the moving trace. In
the local search phase, the trajectory is sampled to collect starting points for pure local descents.

4. Solving Constrained Global Optimization Problems by NOVEL

In this section, we present NG VEL for solving various nonlinear optimization prob-
lems modeled in (8) and ('SPs modeled in (20). In both cases, we first relax the
constraints using Lagrange multipliers into (12) and (21} before applying global
search. We illustrate the interface hetween our global search method and exist-
ing local optimization methods. Finally, we discuss a special type of trace that is
suitable for constraint satisfaction problerns.

4.1, NOVEL for Constrained, Continuous Problems

NOVEL is a global optimization method with three major features: exploring the
problem space, identifying promising regions, and pinpointing exact locations of
local optima.

In exploring the search space, the trace plays an imporfant role in uncovering re-
gions with new local minima. A trace is a continuous aperiodic [unction of (logical)
time that generates a trajectory. At time 0, both the trace and the trajectory start
al the same point. As the trace moves [Tom point 2 to point 2y, the trajectory
moves from point ¥ to ya, where y is a function of the local gradient at 1 and
the distance between z, and y (see Iigure 2}. These two counteracting forces,
descents into local minima and attraction exerted by the trace, form a composite
vector thal represents the route taken by the trajectory.

Note that a trajectory generated in one run can serve as the trace function in the
next run, thereby allowing the trajectory to eventually converge to local minima.
However, this multi-stage application is unduly inefficient as it may take a large
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number of stages belore convergence is reached. As a result, promising points on
the trajectory can be identified, and locat descents using cxisting methods can be
applied to find good local minima. This concept is also illustraled in Figure 2.
NOVEL is a systematic method to find new, nnvisited promising regions of at-
traction without losing good regions found carlier. Ils equation for constrained
minimization is extended from {15) and (16) and can be described as follows.

B LA = wx (L2 (1), A1) = g {2(0). ) (26)
O = AL M0) + 0 (L), AD) — o[, A1) (21)

where g,(t) = (o, (), g0 (t). -+, 02, (1)) and ga(t) = (g2, (1), 92, (F). ... 95, (1)) are
trace functions for the original and Lagrange variables, respectively, w is a weight,
and £ is defined in (12). Note that in (26} and (27), trace functions g {z(t), A({))
and g (x(t), A(t)) have been added {o the right-hand sides of (15) and (16}.

It should now be clear that, instead of using restarts, NOVEL uses a continu-
ous trace to travel through a problem space in order Lo produce a terrain-specific
trajectory of (x{t), A(t)). A trace can be considered as a terrain-independent tra-
Jectory thatl guides the global search in the solution space. A good trace should
be aperiodic so that it does not return to the same starting poini and regenerates
possibly the same trajectory. 1t needs to be continuous in order to be differentiable.
This allows the trajectory generated to follow the terrain in a continuous manner
without restarting to new starting points. lt should be bounded so that it will
not explore unwanted regions. Finally, it should be designed to travel from coarse
to [ine so that it examines the search space in greater details when more time is
allowed.

Since the design of a trace function is an intractable functional programming
problem, we have studied a number of heuristic functtons and fine-tuned them
experimentally. One of the best functions we have lound is as follows.

8.45(1—1)
0,05 281y

i 2wt — 1
gi(t) = psin |27 (;) + r(%l (28)
where i = 1,...,n+ m and p defines the search range.

Ey. {28) is a mechanism to bring the search trajectory out of local minima and
leads the search to other regions. Without i, a gradient-based method will lead
the trajectory to a local minimum, and will not be able to bring it ouf unless the
scarch is restarted. This global-local balauce In NOVEL is controlled by weight w
in (26) and (27). In general, w is a time-varying function that adapts to the chang-
ing terrain seen by the trace. More weight on the trace makes the corresponding
trajectory follow the trace closely, shereby reducing local descents. This is uselul
when the ocal slope is large. On the other hand, less weight is desirable when
the slope is small, allowing the trajectory to betler explore the local terrain. In
this paper, we have chosen a constant weight for simplicity. Qur experiments show
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that NOVEL is very robust with respect to a large range of w for the application
problems we have studied.

Note that (26) and {27) do not pinpoint the exact locations of local minima.
Rather, a set of starting points need to be identified from the trajectory, and any
existing local search algorithm can be applied from these starting points to find
local minima.

NOVEL is more eflicient than multi-starl algorithms because it makes informed
decisions based on the information-bearing trajectory before applying expensive
descents to find local solutions. This greatly reduces the chance of redetermining
iocal solutions already found. NOVEL is more efficient than sampling in stochastic
methods because its trajectory is a continuous probe to the problem space and will
less likely miss a region of attraction in between surrounding reginns already fonnd.
Finally, experimental results show that the lime spent on generating the trajectory
and sampling it is very small as compared to the time to do one local descent. This
is a small price to pay for improved quality.

An important point worth noting is thai in the space spanned by the original
and the Lagrange variables, (18) and (19) will be attracted to a saddle point inside
the divides tLat encompass the initial point. Hence, finding o satisfying assignment
by NOVEL is a local scarch in this space, consisting of descent in the original
variable space and ascent in the Lagrange variable space. Changing the initial
point only affects where local optimization is started. As long as there is at least
one satisfylng solution witbin a promising region surrounded by its divides, any
starting point selected will lead the trajectory to the solution in this region. Note
thal a local search without restarts in the original-variable space alone will usually
get stuck in local minima and is nof sufficient to find solutions that satisfy the
consiraints.

Another distinet feature of NOVEL is thai il uses repair heuristics that starts
from a complete but unsatisfying assignment, and tries to repair it in order to
reduce the number of conflicts using optimization techniques based on continuous
or pseudo-continuous trajectories. Minton et ul. [56] have noted that repair-bascd
heuristics guide an optimization process with a larger picture aboul the current
solution state vhat is not available to standard backiracking algorithins.

For Lagrangian formulations of constrained problems, we need a mierit function
to measure how close a trajectory is from a saddle point (a local minimum that
satisfies the constraints). Here we use a Lyupunov function to identify points to use
in the trajectory for local descents. Lyupunov functions have been widely used in
applications such as autornatic control, neural networks and nonlinear optimization
to measure solution quality. The Lyupunov function F{z, A) is defined as

Fe, ) = || - 7o Lle, VP + 1w Ll AT (29)

1t takes a value of 0 at a saddle point and is positive elsewhere. Hence, it can
be used as an indicator of Lthe distance from {(z, A) to a saddle point. Note that
F(x(t), A()) is a one-dimensional, multimodal function of time .
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We can now pui all the parts ol NOVEL together to solve the constrained con-
tinuons optimization problem defined in (8}.

1. Transformation. Apply the augmented Lagrangian transformation defined in
(12).

2. Global Search Phase. Solve the system of ordinary differential equations (26)
and (27). There can be multiple stages of this step in which the trajectory of a
stage 1s used as the trace function in the next stage.

3. Sampling Phase. Compute the Lyupunov values using (29) as a function of
{logical) time. Pick a set of starting points [rom local minima of the Lyupunov
values,

4. Local Scarch Phase. From a slarting point, solve the original problem (8) using
the augmented Lagrangian formulation (12). This involves solving the system
of differential equations {13} and {14). This step stops when a saddle point has
been reached.

We illustrate the algorithm by applying it 1o solve a problem whose objective
function is Levy’s No, 3 funciion and whose constraint is an elliptic function.

minimize (cos(l)+ 2 cos(2+2)+ 3 cos(3+2x)+4cos(1+3x) (30)
+5cos(b+4x))* (cos(l+2y) +2cos(2+3y)
4+ B cos(3+4y)+4cos(4+5 y) + b cos(R + 6))

subject to — 0.75 + 0.883883 = + 3.90625 2 — 0.883883 y
+ 4.6875 2 y+ 3.90625 y* < 0

Figures 3a-3b depict the terrain in the vicinity of the constrained region. They show
that the terrain is not rugged and the solution is relatively easy to find. Figure 4a
shows a minimum in the feasible region that 1s bordered by two reglons of attraction
of two other minima. The plots of the Lagrangian function (Figures 4c and 4d) show
that many local minima of the objective function have been eliminated, and that
global search in the space of the original and Lagrange variables is more effective
than that in the original variable space alone. Finally, the plots show that the trace
and the trajectory start at the same point, that the trace does not enter the feasible
region, and that the trajectory eventually stops in the feasible region. We did not
show the local search phase due to the simplicity of the example.

4.2, Adaptation of NOVEL to solve CSPs

[n this secltion, we show how CSPs formulated using the Tagrangian method can
be solved by NOVEL.

For continuous C8Ps, the Lagrangian lormulation with an ariificial merit function
(17) and the corresponding differential equations (18) and (19) can be rearranged
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Figure 3. A continuous constrained optimivation problem with Levy's No. 3 function as its
sbjective and an elliptic function as its constraint. This figure shows 3-I) plots of Lagrangian
function £ on dimensions (a)  and y and (b) « and A

into the following form.

dz
= - Nik() + 60 (31)
where g(i} = — [/Uh{.a(r)) r.lr] 7 h{x(t)) {32)

(), a time varying [unction, is based on {19) that relates the Lagrange multipliers
and 7, h(x), the Jacohian of h{x). We call g{{) an émplicit {race because it is a
trace determined by the system at run-time rather than defined ahead of time.

There are two forces in the dynamics of {31}, On one hand, the trajectory tries to
foliow a gradient path of N (A(x)) in order to find a solution satisfying N(hix): =0
On the other hand, g(t) in (32) will bring the trajectory z(t) out of any local
minimuwm when N(h(x)) is larger than 0. As shown in (19}, g({) will change over
time as lang as A{x) is not zero. Consequently, g() will pull the trajectory oul
of local traps and lead Lhe trajectory lo a neighboring region without restarting
randomly. The direciion in which the trajectory (32) will go depends on the history
of constraint violation j'f]l-a(;zr(r)) dr and rhe information returned by - h(z]).

Our experiments show that (31} and (32) are ellective to lead the trajectory out
ol local minima. Moreover, it carrics all the benefits of the original method in using
a continuous trajectory lo traverse from one region to another without relying on
random restarts. Note that in solving CSPs using (31). local optimization is not
required, as the first satisfiable solution is a solution in the Lagrangian space of the
eriginal CSP modeled by (18) and (19).

So far, we have discussed the application of NOVEL for continuous CSPs. For
discrete SATSs, we start with a discrete Lagrangian formulation (21) and generate
a pseudo-continuous trajectory that moves from one discrete paint o another. By
rearranging (22) and (23), we get a set of finite difference equations.

Tpq1 = L — A \(}J(T;,)] + gk (33)
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Figure {. 2-1) contcur plots of the objective function for the example in Figure 3 showing (a) the
trace and (b) the corresponding trajectary; 2-I) contonr plots of the Lagrangian [unction showing
{¢) the trace and (d) the corresponding trajectory. Here, § and X are the starting and ending
points, respectively.

where gx = — [Zj:;h(x;)] A hize) (34)

Here, gi is the implicit trace funciion that accounts for both its history of constraing
violation, E';":luh(.z;) and its current status of consiraint satisfaction, A h(xg).
Note that A h(z) is an m-by-n matrix where m is the number of variables, n is the
number of constraints, and its (i, j)* entry is 0 if A;(x) = 0 and %’%l otherwise,

Finally, we summarize in Figure 5 the mathematical formulations of methods
derived in Sections 2.5 and 4.1 for solving unconstrained continuous problems ver-
sus constrained continuous problems. These equations are further classified into
those using local optimization techniques versus those using global optimization

techniques. ‘The [igure cleatly indicates that NOVEL is a concept that can be
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Figure 5. Relationship between ¥OVEL and local optimization methods.

integrated casily into existing local optimization methods. Equations for discrete

problems are similar and will not be shown.

5. Results on Continuous Constrained Optimization Problems

In this section we deseribe experimental results on some existing constrained op-
timization benchmarks [23] (Table 1). These benchmarks are challenging because
they model praciical applications that have been studied extensively in the past.
As a result, impravements are generally diflicult. The problems we have studied in
this paper are of moderate sizes; results on larger problems will be reported in the
future. Results on continuous unconstrained problems are reported in [80].

5.1. Implementation: The NOVEL Package

We have developed a package to implement ¥OVEL, The package has a Kerncl, a
Parser/Translator, and a Visualization Frontend. Figure 6 shows its structure.
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Figure 6. Organization of the VOVEL package.

NOVEL is a global optimization system for solving general constrained and un-
constrained problerns. Users specily an objective function and a constraint set i
symbolie form as well as some control parameters.

The specified problen is supplied to the Parser/Translator. The Parser checks
the input for integrity, detecting typographical errors, runaway variables, and some
syntax crrors. Any error encountered will be reported. The parser then renames
all the variables entered and assigns them to array entries. (This is esscutial for
efficiency reasons.) Automatic renaming allows variables to be entered as they were
specificd. The Parser also accepts high-level directives to simplify data entry. For
instance, to declare all variables o be positive, the directive “Variable Positive
True” can be used instead of declaring the lower bound of each variable to be
sero. Last, the Payser provides problem statistics, such as the number of variables,
constraints, and bounds when parsing is finished.

If parsing is successful, a Symbolic Translator will translate the objective Tunction
and constraints and produce the Lagrangian function and its gradients needed in
the optimization process. ‘I'he translator is currently writlen in Mathematica®
Since differentiation is done symbolically, the gradients are in closed forrms and can
be computed accurately in any computer. Finally, the Translator generates the
eode into Fortran to be compiled into the kernel.

The major part of the Kernel is [.SODE?, a package for solving ordinary differ-
cntial equations. 1t works on a varicely of plaiforus, as all the programs are coded
in Fortran,

Finally, results output by the Kernel are displayed in graphical form nsing the
Visualization Frontend. For problems that need rescaling or have numerical insta-
bility, an off-line sensitivity analyzer will be used to verify constraint feasibility and
detect ill-scaled or bard coustraints.
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5.2, An Illustrative Example

We illustrate NOVEL by solving a constrained optirmization problem and by show-
ing the solution process graphically in the global search phase.

The following engineering problem (Problem 5.2.1 in [23]) is a distillation sequenc-
ing problem of non-sharp separation with a three-cormponent. ferd mixture that has
to he separated into two three-component products. This is a nonconvex nonlinear
programming problem with 48 variables, 13 lincar constraints, and 25 nonlinear
constraints. All the variables take only nonnegative valies.

minimize  f =a0l + {all 4+ a2l rlkAl + a31 rhkB) + bAL A5 + bB1 2B5) F5 +
a02 4 (412 4 a22 #lkB2 + a32 rhk(C2 + bA2 2 AL12 | BB2 2H13) I'13
subjectto F1 4+ F2 4+ F3 4+ F4-300=0, F6—F7T—F8% =0
Fo—Flo—F11— F12=0, FI1— F15 - F16 — 17 =0
F18 = F19— F20 =0, }'6 £ A6 — rlkAl f45 =0
FlarBl4—rlkB2 fB13=0, F9xBY— vhkB1 fB5=0
F18 2C18 — rhk(2 fC13 =0, fA5— F52A5 =0
JBS ~ F52B5 =0, JCB — ;5 205 = 0
FA13 - FI13rA13 =0, fB13- F13zHI13=10
FOIB— F13 2C13 =0, fA5 — F6 246 — 'O A9 = D
fBS—F6aRB6 - I92B9—0, fOCE - F6z06 - FOx(9 =0
JALS - F14 2 A4 - F18 zAIS =0, fFRI3 — F14x2B14— F18 2818 =0
JOIB—Fl4d 24 ~ FIR xC18 =0, 0.333F1 + F15 2414 — fA5 =0
0.333F1+ 15 2B14 - fB5 =0, ¢.333F1 4+ 15 2C14 — JC€5 =0
0.333F2+ FlO2A9 — fAI3 =0, 0.333F2+ Fl0zH9—- fB13=0
0333F2+ FI0 xC9 - fC13 =10
0.333F34 F72AG6+ F1l aAY + F16 2414 + F19 2418 - 30 =0
033313+ F7TxB6+ F11 2894+ F162BI4 + F19zB18 - 50=10
D.333F34+ 17206+ Y1 2094+ FI62C14 4 Fl9xC18—30=0
2AS+2B5+ 205 -1=0, A6+ 2H6+ 2C6 — 1 =0
TAD + 2 B9+ 29— 1 =0, sA13 4+ 28134+ 013 -1 =0
AN+ B4+ 2614 = 1 =0, » 418+ »BIR 4 »C1R - 1 =10
ik Al < 085, rlkB2 < 0.85, rhkB1 < 085, rhkC2 < 0.85
rtkAl > 1, olkB2 > |, vhEkBL > t, rhkC2 > 1
Tnitial el = 023047202 = 0.75836;a 1l = 0.0130004;012 = 0.0661588;
Conditions : a2l = 0.0093514;a¢22 = 0.0338147;a31 = 0.0077308;a32 = 0.0373349;
bAl = —0.0005719:6A42 = 0.0016371;6H1 = 0.0042656;6H2 = 0.02858996;
OB = rAld = 0,006 = 0,0 AL =0

It

The test problem is solved with w = 10 and a search range from —10 to 10
using the initial assignment specified in [23]. We have used a three-stage cascaded
implementation in which there are three applications of NOVEL, with the output
of one stage feeding into the input of the next stage. In Figure 7, we plot the
Lyupunov function values for the trace and the trajectories.
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Figure 7. Lyupunov values of the trace function and the trajectorics of a 3-stage cascaded process
observed in solving the example. {(a) Lynpunov values of the trace function with respect to logical
time; (b} Lyupunov values of the trajectories of the three cascaded stages, with the last stage
having lower Lyupunoyv values.

Since the trace is terrain-independent and may be far away from feasible solu-
tions, its Lyupunov valnes are generally large (Figure Ta). By combining gradient
information for the original and Lagrange variables (#,}), the irajectory moves
closer 1o the Jocal minima. This is depicted in Figure Th that shows the Lyupunov
values for the three trajectories. Tt further shows that increasing the number of
stages is beneficial in drawing the trajectory closer to the local minima. Note that
there is a trade-off between solution qualily and computation time when deciding
on the number of stages ta nan. If the ferrain is very rugged, then it is beneficial
to use more stages, as the global scarch phase is more effective in overcoming local
minima. On the other hand, if the terrain is smooth, then using more stages will
nol improve the solntions. Onr experience shows that three cascaded stages are
often enough for most applications we have studied. In a few cases, even using onc
stage will result in the same solution quality.

Tor a thorough study of the behavier nf ¥OVEL, we allocated 4 days of CPU
time to solve the test problem. We obtained in 90 minutes a solution of value
—1.05 which is better than the best known value of 1.56 reported in [23]. Prior
to obtaining this solution, 27 calls to the Lagrange local optimization routine were
made. Further, all the 27 solutions found by these calls resulted in the same solution
reported in [23]. No furtlier improvement was found by NOVIL after getting the
better solution of —1.05.

5.3. Experimental Resnlts

We have applied NOVEL to solve a number of engineering problems in [23] and have
compared the results to those reported there. Far reasons stated in Section 4, we
use the saine paramecters (step size and trace function) to solve all the problems. We
have also used initial points that NOVEL started, as suggested in the benchmark
gset. The only oxception is the search range which has to be modified [or each
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Table 2. Results of some engineering design problems using NOVEL with a comparisen to the best
known solutions [23]. NOVEL's time is in seconds on a Sun SS 10/51 computer.

Prob. 1D Application # Var. ¢ Const. ¢ Probes  Time (sec.) NOVEL  Known

3.1.1 nanconvex 8 6 11173 49704 7049 7049
3.2.1 nonconvex 4 4] 179 16428 -30665 -JUBBS
1.5.1 test NLIP? 15 o] TR GR1 —13.45* -1196
1.8.1 heat exchanger 7 8 1888 70314 189.3 189. 3
4.9.1 heat exchanger 11 G & 52616 288* 7049
5.2.1 distillation 46 36 655 277630 —1.05*

5131 distillation 167 62 o BAGDO 2.06* 2.98
5.4.1 pooling 38 32 219 263419 1.86 1.86
6.2.1 pooling 9 4 T80 17936 400 400
65.3.1 pooling 11 6 603 1 7862 600 600
6.4.1 pooling 11 G 928 1862 750 750
7.2.1 heat exchanger 16 13 4407 541255 56511* 56825
7.3.1 heat exchanger 27 19 3713 56730 45370* 46254
7.4.1 heat exchanger 31 2% 718 213574 1041a 8% 34633

specific problem. The reason for notl tuning the parameters is to avoid any bias, as
good solutions can always be obtained by sufficient tuning. We used three cascaded
stages in NOVEL in generating these results.

Table 3 summarizes the results found. (Results [or some of the smaller problems
are nol reporled unless there are improvernents; results for the larger problems are
incomplcte at this time.) Column 1 lists the problem identifications that appear in
the benchmark collection [23]. Columns 2, 3, and 4 give the application domains,
the number of variables, and the number of constraints of each test problem.

I'he column labeled "# probes’ denotes the number of starting points sampled
from the trajectory in the third stage in the time that ¥YOVEL was run. These
points were used as starting points from which local constrained optimization was
performmed. The number of starting points depends on the number of dents that
appeared in the corresponding Lyupunov curve of the trajectory. Note that some of
these starting points may lead to the same solution, and starting points that appear
far apart may actually le in the same region containing one local minimum. This
situation can only be discovered when local optimization is run. We have observed
this phenomenon in Problems 4.6.1, 5.2.1, 6.4.1, 7.2.1, and 7.3.1, and have found
it a rule rather than an exception: the more time the global scarch was run, the
more frequently such a revisit could happen. It is not unusual that the last 20% of
improvement calls for 80% of the total time.

Column 6 shows the CPU time spent on each problerm. The time limit is sct in an
ad hoc fashion because the relationship between solution guality and computalion
time is problem dependent. For problems 5.2.1 and 7.2.1, solutions with quality as
good as 99% of those shown in Table 3 were obtained within 477 and 15 seconds,
respectively. However, we did not stop the search as that point as we did not know
whether better solutions would be obtained when given more time.
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Function A L(x, A)
min_f — oo
fori:=1ltom

Flip «[:]

Compute L{z, A)

if L{x, A) < min_L

then

min L = L{z, A)

miin_posttion = i

Procedure NOVEL
Generate random truth assignment =
while u(z) > 0

Compute A, L

r=z S ALz, A)

end if
Compute U {(x) Restore «|i]
A=A+ U(x) end for
end while

for i:= 1tom
Ay L(x[i},A) =10
end for
A L{z[min_position], A) = 1
return A, Lz, A)

Figure 8. Pseudo-code of NOVEL for SAT.

Column 7 shows the results obtained by NOVEL, and Column §, the best known
results to date. Mesults with an asterisk have heen improved over previous results,
where improvementis range between 1% to 2,400%. We did not find any improve-
ments for Problems 3.1.1, 3.2.1, 4.8.1, 5.4.1, 6.2.1, 6.3.1, 6.4.1. This may be caused
by the fact that the solutions obtained by existing methods arc alrcady very good,
or simply more time is required to improve the solution. Our results indicate that
NOVEL is very robust in discovering new regions and in escaping from local traps.

Results on applying NOVEL to optimize filter bank design are presented else-
where [99].

6. Experimental Results on SAT Problems

In this section, we apply a discrete version of NOVIEL to solve SAT prohlems. Ls-
ing (20}, we first transform a SAT problem into a constrained optimizalion problem
with a heuristic objective of minimizing the number of unsatisfied clauses. The
pseudo code based on (24} and (25) is shown as {ollows.

Given m variables and n clauses in a SA'T problem, the complexity of the pseado
code is as followe. An update ol A, involving the computation of U/(x}, takes (}(n)
time, assuming that the number of literals in eacl clause is less than a constant
k. This is less than the Q(mn) compiexity of computing A L(z, A}; hence, the
order of magnitude complexity remains unchanged. Computing &, L{z, A} differs
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Table 4. Results on cirenit diagnosis problems comparing NOVEL's results on Sun 88 10/51,
GSAT's results on SGI Challenge [76, 74], and Fleurent et al, tabu search on Sun 858 10/50 [22].

Problem NOVEL {Max-Flips=625 per crial) G3[t8] G353 [r4] ‘Tabu

D Var.  Clauses Trials Time {sec.} Clauses Time Time Time

avg max min avg Unsat'd (sec.) (sec.) (sec.)
55a7H52-158 1363 3034 428 25 7 15 o] 90 35% 22
s5a78532-038 1501 3575 541 22 10 L& 0 129 10 16
ssa7532-159 1363 3032 371 18 8 12 0 720 4 a1
s3a7552-160 1301 2126 323 1 7 10 o] N/A 3 69

* Results excluding 2 failures in 10 trials.

from a greedy step only in the use of L instead of w{z), and has complexity O{mn).
Empirically, the new algorithm takes around 30% more overhead as compared to
its greedy version.

A typical scenario in the trace-based optimization goes as follows. In the original-
variable space, the trajectory of N(h{z)) goes up and down and visits the region
whete the current assignment is in. If a satisfying assignment such that MN{h(»)) = 0
is in this region, then the sotution will be found by gradient descent, and the
implicit trace due to the Lagrange multipliers (34) will settle down as less violation
is seen along the way. If the region contains no satisfying assignment, then the
implicit trace due to the Lagrange multipliers (34) will be changing according to
the deviation of A{x) from 0. In this case, the trajectory will get out of the region
with the help of Lagrange variahles that gnard againat constraint violation.

We have evaluated NOVEL using SAT benchmarks in the DIMACS archive. Due
to the large number of instances, we have only evatuated the following benchmarks.

e Circuit Diagnosis Problems. Alan Van Gelder and Yurmni Tsjuji contributed
a set of SAT formulas based on circuit fault analysis.

e Boolean Inductive Problems. Kamath et al, [49] developed a set of SAT
encodings of Boolean induction problems, The task is to synthesize {or induce)
a logical circuit from ils input-output behavior.

Figure 9 shows the solution process of NOVEL i solving a stuck-at-fault problem,
s5a7hb2-038, The eight plols show the number of unsatisfied clauses versus the
number of trials (each involving 625 {lips for this problem) from different starting
poinis. We note that all runs have found satis(ying solutions, and thal the number of
satisfying clauses is not monotonically decreasing. The latter is caused by changes in
the Lagrange variables, which are not shown in this figure. Whenever the trajectory
gets in a region with no satisfying solution, the Lagrange variables will bring it out
after the trajectory finishes its shorl descent in the region. This process is repeated
in the glohal search phase until the ‘right’ region is reached, and the local descent
will identify a satisfying assignment in that region.

In Table 4, we compare NOVEL with the published results on GSAT. We tested
each problem ten times and recorded its minimum. maximum, and average num-
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Figure 9. Trajectories of ssa7552-038 showing number of unsatisfied clanses versus number of
trials (each involving 625 Hlips) from different starting points. Other conditions arc identical.

Table 5. Results on Boolean Circuit Induction Problems: comparison between NOVEL's results on
Sun S8 10/51 and GSAT’s published results [75] on SGI Challenge and Kamath et al’s published
results on VAX 11/780 [49].

FProblem NOVEL (Max-Flips=(5"#vars) per try) GSAT  Kamath

1D Var. Clauses Tries Time (sec.) # Clauses  Time Time

max min  avg max  min o avg unsat'ed (sec.) (sec.)

it16al 1650 19368 179 16 109 91 9 56 0 274 2039
1lebl 1728 24792 35 37 61 47 22 34 0 2540 78
uleel 1580 16467 8 1 4 12 1 4 0 4 it

ii16d1 1230 15901 157 2 86 50 2 33 0 112 1547

iiléel 1245 14766 1 | 1 2 1 2 0 2 2156

ber of trials, CPU time, and number of unsatisfied clauses. The results show that
our algnrithm is comparable to GSAT in terms of average CPU time (as a SGI
Challenge is faster than a Sun S8 10/50). Further, NOVEL successfully finds satis-
fying assignments for all the ten trials, using integral seeds 0 thru 9 in the randoin
number generatar (drand{8()} to generate initial assignments.
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Table 6. Results on Boolean Circuit Tnduction Problems: comparison between NOVEL's
results on Sun 38 10/51 and Kamath e# al’s published results on VAX 11/780 [49]

Problem NOVEL (Max-Ilips= (5™#vars) per try) Kamath
I Var. Clauses Tries Time (sec.) # Clauses Time
max min avg max min  avg unsat’d (sec.)
1l6a2 1602 23281 136 90 102 63 44 49 0 608
ii16b2 1076 16121 59 22 38 2% 3 13 0 236
ii16e2 924 13803 127 70 107 34 20 29 0 521
1116d2 836 12461 151 71 Yy 37 15 26 s} 544
i116e2 532 7825 20 1 9 4 1 2 0 376
1132al 459 9212 122 2 50 27 i 12 0 177
ii32b1 228 1374 11 7 20 13 3 6 0 5
113252 261 2558 39 7 14 24 5 9 0 57
ii32b3 348 5734 83 2 33 19 b 14 0 190
1i32b4 381 9618 110 1 38 26 1 £ 0 259
1321 225 1280 18 5 1l 6 2 4 0 24
i132c¢2 249 2182 9 6 o] 6 4 5 0 9
ii32¢3 279 3272 40 14 26 48 16 31 0 14
1132c4 759 20862 174 58 118 111 32 80 0 155
1132d1 332 2703 43 11 a5 17 & 10 0 &R
1132d2 A 5153 22 7 13 21 6 12 0 178
113243 824 19478 132 3 61 66 ] 30 0 1227
ii32el 222 1186 13 5 9 5 2 3 0 -]
ii32e2 267 2746 9 4 T T 3 5 0 10
ii32e3 330 5020 12 4 9 18 7 13 0 133
1i32e4 387 7106 7 5 54 20 12 14 0 277
11325 522 11636 103 2 91 30 1 24 0 390

In Tables 5 and 6, we compare the performance of NOVEL, GSAT, and Karmath
et al.’s integer programuning method in solving the circuit induction benchmarks.
We have used only the published timing results of Kamath et al. [49] who ran
their experiments on a VAX 8700 computer, and Selman’s GSA'T [T5] who rau Lis
experiments on a SGI Challenge computer. We did not attempt to reproduce these
results on the same platform, as some runs may depend on the initial conditions
used. Our results on N¥OVIEL were obtained on a Sun SS10/31.

Tables 5 and 6 show that NOVEL’s results are better than previous results on
these problems. Our resulls were Tun using ten random initial points generated by
integral random seeds between 0 and 9. Since our algorithm has less dependence
on initial points, all ten runs have found satisfiable assignments. More extensive
results on applying this method have been discussed elsewhere [98].

One of the major advantages of NOVEL is its ability to escape [rom local minima
without restarts. Consequently, it is able to find feasible assignments irrespective of
ite initial points. In contrast, descent methods like GSA'L have to rely on properly
chosen initial assignments. If an initial assignment is not in a promising region,
then descent methods cannot find a solution. In such a case, these methods will
rely on a good sampling procedure to find new starting points.
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7. Conclusions

We have proposed a global optimization method for hoth continuous and dis-
crete search problems based on a continuous trace that traverses a problem space.
NOVEL consists of a global search phase and a local search phase. 1t produces an
information-bearing trajectory from which sample polnts can be ideutified as stard-
ing points for local search. Due to informed decisions in selecting good starting
points, XOVEL avoids many unnecessary cfforts in redetermining already known
regions of attraction, and spends more time in finding new unvisited ones, Tis
complexity is related to the number of “regions of attraction” rather than on the
number of dirmensions. It is betier than multi-start methods that peeform blind
sampling, as well ay sandon searcl algorithms (such as genetic algorithins and sim-
ulated annealing) that do not exploit gradient information in their global search
strategies. It incurs less overhead as compared to generalized gradient methods and
other deterministic global optimization methods. 1o further can be integrated into
any existing local search method without affecting its global scarch.

We have successfully applied NOVEL to solve a number of important benchmark
problems derived from manufacturing, comnputed aided design, and others. 1t has
better performance as compared to existing methods for most of these problems
and has similar perforinance for others.

Our future work in this area will be oo [inding becter Lrace funciions, paralleliz-
ing the execution on massively parallel computers, and studying many challenging
applications in neural network learning and signal processing.
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Notes

1. Mulhematicn is a software package developed by Wolfram Rescarch, Champaign, [linois.

2. LSODE, or Livermore Solver fur Ordinary Diferantial Fanationg, is the hacic salver of ()1 E-
PACK [42] developed in Lawrence Livermore National Laboratory.
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